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Attenuation Constants of UHF Radio Waves in
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Abstract —This paper describes the attenuation constants of UHF radio

waves in arched tunnels. In the analysis, a point-rnatchlng method is

combined with Muller’s method and is appfied to determine the propa-

gation constant of the dominant mode. We compare the cafcrdated resrdt

with previons experimental data, as well as that of the experimental

equation and the theoretical result of a circular waveguide having the same

cross-sectional area. Firmfly, an approximate equatiori for the attenuation

constant is derived from the point-matching solution so that one can

determine or estimate the value without elaborate calculations.

I. INTRODUCTION

In recent years, many studies have been made of the propa-

gation characteristics of radio waves in tunnels in the UHF band.

From the theoretical point of view, tunnels, can be regarded as

hollow waveguides surrounded by a lossy dielectric medium, such

as concrete, ground, and so on. In these studies, tunnels are

modeled as hollow waveguides with circular [1]–[3], rectangular

[4]-[5], &d elliptical [6] cross sections.

The cross section of tunnels, in fact, is usually rectangular or

arched-shaped. In the case of arched tunnels, a theoretical treat-

ment of the propagation characteristics becomes somewhat dif-

ficult because the boundary does not coincide with a coordinate

surface of au orthogonal coordinate system. For this reason, the

arched tunnel is modeled in [7] and [8] as a circular waveguide

having the same cross-sectional area. In addition, an experimen-

tal equation for the attenuation constant is derived from experi-

mental results. Also, in [1] and [2], a theoretical calculation of the

propagation constant has been presented according to this idea.

However, there still remains the problem of whether the idea is

correct or not, and, hence, there is a need to verify this result by

another method. Three of the authors presented the propagation

characteristics in arched tunnels [9] by a point-matching method

combined with Newton’s method, in which poor convergence of

the propagation constant against the number of matching points

was obtained. The number of matching points on a half boundary

curve was chosen to be six to agree with the laboratory experi-

mental result for the attenuation constaut, without theoretical

verification..

This paper extends the earlier work [9] and presents a new

approximate equation for the attenuation constant in arched

tunnels. The purposes of this study are:

1) to show the validity of the previous number of matching

points in the convergence characteristics by Muller’s

method [11];

2) to show how the point-matching solutions agree with the

experimental results [1], [7], [8], and to compare them with

the theoretical results of an equi-area circular waveguide;
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Fig. 1. Cross section of the arched tunnel and coordinate systems

3) to present a simple and approximate equation for the

attenuation constant based on the point-matching method

so that one can determine or estimate the value with

reasonable accuracy and without elaborate calculations.

II. POINT-MATCHING SOLUTION

Fig. 1 shows the cross section of the arched tunnel to be

considered here. The boundary curve is divided into two parts:

circular (0 < Iql < n) and straight (Iql < 0) lines. The internal

region of the boundary is composed of free space with permittiv-

ity CO and permeability PO, and the extemaI region is composed

of a lossy dielectric medium with permittivity c (c, = c/cO rela-

tive dielectric constant), permeability ILO, and conductivity u.

Here, we present a brief summary of the point-matching method

described in [9]. For the Efl mode, which corresponds to the

dominant mode with horizontal polarization (transverse electric

field is parallel to the y-axis in Fig. 1), the z-components of the

electric and magnetic fields are written as

inside

E,= ~ ,4HJ. (up/a) sin(nrp)exp[j(~ t-hz)l
~=o

H,= ~ BH.ln(np/rz) cos(nq)exp[j(ut -hz)]
~=o

the boundary, and as

E,= ~ ~ZH~2)(up/a) sin(nT)exp[j(tit -hz)]
~=1)

Hz= ~ D. H~2)(up/a) cos(rrrp)exp[ j(tot-hz)]
~=(J

outside the boundary, where

u2=(k; –h*)a2 u*=(k; –h2)a2

k: = W2C0/L0 k: = U2cpo – jq.tou = k~c~

~“ = C, – jU/~~0r

(1)

(2)

(3)

(4)

(5)

h = ~ – ja is the propagation constant, a is the attenuation

constant, and /3 is the phase constant. Also, AH, B., C., and D.

are unknown coefficients, J. ( x’) is the n th order Bessel function

of argument x’, and Hj2) ( y’) is the n th order Hankel function of

the second kind of argument y’. The above expansion may not

be a complete representation of the fields, e.g., the fields may

have to be represented by Bessel functions in the largest circle in

the air, Hankel functions outside the smallest circle circumscri-

bing the tunnel, and both Bessel and Neumann functions in the

in-between medium. However, since the boundary is convex, and

the results to be presented in the next section are reasonable, the

above representation is used here.
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matching points are selected symmetrically about the

since the cross section is symmetrical about this axis. The

points used to compute the results to be presented in Fig. 2 are

(?l-1/2)T
v.= ~ , n=l,2,. ... N (6)

where N is the number of matching points. By matching the

tangential field components along the boundary at the eqni-angu-

lar points, 4N – 2 simultaneous homogeneous linear equations

are obtained in a matrix form as

[QIITI=O (7)

where [T] is column matrix of coefficients An, Bn, Cn, and Dn.

The propagation constants then can be found by searching for

the zeros of det [Q]. In a similar manner, the det [Q] for the E:l

mode corresponding to vertical polarization (transverse electric

field is parallel to the x-axis in Fig. 1) can be obtained by

interchanging sin (n q) and COS(n q) in (1) and (2) with each

other.

Calculations were carried out based on Newton’s and/or the

Secant method, in which the complex variable u was adopted for

the root of det [Q ] = O instead of the normalized propagation

constant [10]. As a numerical example, the attenuation constant

against matching points N is shown in Fig. 2. Though poor

convergence is seen in Fig. 2, six matching points have been

adopted for the succeeding calculations, because the value of the

attenuation constant at N = 6 agrees well with the result of a

laboratory experiment and is close to the average value at N = 5

to N=ll.

We reexamined the convergence properties by other methods

in order to improve them. One method is to select the matching

points at intervals equidistant along the boundary. Another is to

use Muller’s method [11] instead of Newton’s to search for the

zeros of the det [ Q ].

Fig. 3 shows how the convergence property can be improved in

comparison with the one in Fig. 2. Muller’s method is superior to

Newton’s method for this type of problem. An equidistant method

seems to be better than an equiangular one. Attenuation con-

stants by both sampling methods converge to a constant value at

N >11, and the value at’ N= 6 is almost the same as the

asymptotic value at N >11. Hence, it is confirmed that the

number 6 of the matching point has been appropriate for calcula-

tions.
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Fig. 3. Convergence characteristics of attenuation constant versus number of

matching points by Muller’s method.
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Fig. 4. The tunnel dimensions under measurement and equivalent dimen-

sions of arched tunnels considered here.

111. COAfPARISON WITH EXPERIMENTAL RESULTS

We calculated the frequency characteristics of the attenuation

constants in several arched tunnels in order to compare the

results of the point-matching solution with previous experimental

results [1], [7], [8]. The tunnel dimensions under experiment are
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Fig. 5. Frequency characteristics of attenuation constant.

shown in Fig. 4. The equivalent dimension paameters, radius a,

and angle O of the arched tunnel considered here are derived

from the width and height of these tunnels in Fig. 4 so that they

may have the same cross-sectional area, i.e.,

a = 2.95 m, 8 = 64.1° for (a) Suikai tunnel,

a = 3.43 m, 6 = 62.6° for (b) Sekiyama tunnel,

a= 4.98 m, 0=62.1° for (c) Hazaka tunnel.

It is noted that the shape difference between the actual cross

section and the present arched shape is very small.

Fig. 5 shows both the theoretical and experimental results. The

calculated results are inversely proportional to frequency squared

in the UHF band and agree well with experimental data.

IV. COMPARISON WITH THE RESULTS OF EQUIAFWA

CIRCULAR TUNNELS

ArI approximate equation for the attenuation constant in arched

tunnels has been presented by Chiba [7] from the result of

experiments. In formulating the equation, the arched tunnel is

modified as a circulm waveguide whose radius is chosen so that

the cross-sectional areas are equal to each other. The equation is

given in a simple form in the frequency range of 150-800 MHz,

i.e.,

~=1460~

r’
(dB/km) (8)

where A is the free-space wavelength and r is the equivalent

radius of the circular area (2.6.5 m < r <4.2 m).

According to (8), the attenuation constant is proportional to A2

and inversely proportional to r3. Thus, we examine the validity of

the experimental equation by the point-matching solution. As

seen from Fig. 5, under the condition that r is somewhat larger

than 1, the wavelength dependence applies. We calculated the

attenuation constant as a function of radius a in order to verify

the dimensional dependence. Fig. 6 shows the result for a

frequency of 800 MHz, and shows that the attenuation constant
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Fig. 6. Attenuation constant as a function of radms a.
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the value in the equiarea circular tunnel

is inversely proportional to a 3. From Figs. 5 and 6, the experi -

mental equation is confirmed to be appropriate as far as 1 and r

are concerned.

Equation (8), however, lacks information about polarization.

This situation is the same for the circular tunnels. There are two

dominant modes in arched tunnels corresponding to horizontal

and vertical polarizations as mentioned in the previous section. It

is necessary here to verify whether or not the attenuation con-

stant in an equiarea circular tunnel is the same as in an arched

tunneL In this sense, the attenuation constants of the li~l and the

E~l modes, shown in Fig. 7 as a function of angle 8, are

compared with the attenuation constant given by (8) and

the exact one of the corresponding dominant EEIII mode in

the equiarea circular tunnel [3]. It is seen from Fig. 7 that the
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attenuation constant given by (8) ahnost agrees with that of the
E~l mode. Hence, (8) is valid approximately for horizontal

polarization characteristics in arched tunnels.

On the other hand, the exact attenuation constant of the EHII

mode in an equiarea circular tunnel is larger than that of the E~l

mode and is smaller than that of the li~l mode. Though the value

for the EHII mode is closer to that of the E~l mode than l?~l

mode, the differences among the theoretical values of these

modes become larger as the angle 6 increases. This means, in the

strict sense, that the idea of equiarea leads to errors. Disagree-

ment between these values seems to be caused by the effect of

tunnel dimensions relative to the wavelength according to polari-

zation and material constants of the external medium. We will

derive a new approximate equation in the next section based on

the point-matching solution, taking account of these effects.

V. NEW APPROXIMATE EQUATION

The attenuation constant, in general, is a function of tunnel

dimensions, frequency (or wavelength), polarizations, dielectric

constant, and conductivity of the external medium. For UHF

waves in a tunnel environment, the tunnel dimension is somewhat

larger than the free-space wavelength. And the imaginary part of

the relative dielectric constant in (5) may be neglected. This

condition is applied to determine the propagation characteristics

in rectangular tunnels [4], where the approximate equation for the

attenuation constant is given. We rewrite the equation as follows.

For the dominant ,?7/1 mode with horizontal polarization

and for the dominant Efl mode with verticaf polarization

where C,l is the relative dielectric constant of side walls, C,2 is

the relative dielectric constant of floor and roof, and dl and d2

are the width and height of tunnels, respectively.

A similar result has been presented in circular dielectric wave-

guides analyzed for the optical spectrum region [12], i.e.,

( Cr 1
a = 5.09A2 +

)
(dB/m) (11)

d3&=i d3@i

where d = 2a is the diameter of the circular waveguide.

One can see that the above equations (9)–(11) are in the same

fokn except for the numerical coefficients, even though the cross

sections are different. Therefore, we assume the same form of

attenuation constant in arched tunnels with Kh, KU instead of

corresponding numericaf coefficients in (9)–(11).

For the E~l mode

( Cr 1
ah = KhA2 +

)

(dB/m) (12)
d;~ d;-
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and for the Efl mode

where dl and d2 are the maximum width and height, respec-

tively, as shown in Fig. 8.

If the above equations holds true in the UHF band, the

numericaf coefficients Kk and K. must be constant and indepen-

dent of dl, d2, A, and cr. In this sense, we calculated Kh aud KU

by the point-matching method as functions of all/A, d2/A, and

C.. These values are shown in Figs. 9 and 10. It is seen in these

figures that Kh i~d Ku approach constant values as dl /1 or

d2 /i increases, and that Kk and Ku are indepdnent of C,

(e, ~ 5). This means that the equation holds under the condition

that the width and height of a tunnel are larger than about four

times the free-space wavelength.

The numericaf coefficients Kh and Ku, on the other hand,

depend on the cross-sectional shape or aspect ratio dl /d2. For

most arched tunnels,’ the aspect ratio dl /dz is in the range

1.3–1.6, or the angle $ in the 60°– 80° (range). The values of .Kh
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and Ku are calculated in Fig. 11 as a function of aspect ratio

dl /d2 .

VI. CONCLUSION

We have presented the attenuation constants of the dominant

‘modes corresponding to horizontal and vertical polarizations of

the electric field in arched tunnels based on the point-matching

method combined with Muller’s method. The calculated values

agree well with experimental results, and the validity of the

previous experimental equation is confirmed theoretically for the

horizontally polarized mode. Then, due to the fact that the

difference in the attenuation constant between rectangular and

circular tunnels is expressed only by a numerical coefficient in

the approximate equations, we derived a similar equation for

arched tunnels based on the point-matching solution considering

polarization characteristics. The resultant equation can be used

directly to determine or estimate the value for UHF radio fre-

quencies.
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The Thermal and Spatial Resolution of a Broad-Band

Correlation Radiometer with Application to Medical
Microwave Thermography

JOSEPH C. HILL, MEMRER, IEEE, AND

RONALD B. GOLDNER, SEN1ORMEMBER, IEEE

Abstract —The improved spatiaf and thermaf resolution of a broad-band

microwave correlation radiometer is discussed. Theoretical upper and lower

bounds of the combined spatial and therrnaf resolution in a dense transmis-

sion medhnn are presented afong with data obtained for two therrnaf

sources in air. The application of broad-band correlation techniques to

medicaf microwave thermography is novel, and the results indicate that

electronic scanning of tissue should be possible.

I. INTRODUCTION

Coherence theory [1] and its application to correlation radi-

ometer [2], [3] has been discussed extensively in the literature

and has been employed in radio astronomy for over 30 years.

Because of its improved spatial resolution, correlation radiometry

has received considerable interest in its application to medical

microwave thermography [4]–[7].

Previous publications [4] have discussed a correlator employing

a “pencil beam” antenna pattern formed by beam multiplication

of partially overlapping antenna patterns, such as shown in Fig.

l(a), which permits examination of a small volume of tissue.

However, examining an adjacent volume of tissue would require

that the antennas be physically moved relative to the patient.

Recent publications [5], [6] have discussed measurements em-

ploying overlapping antenna beams as shown in Fig. l(b). The

enclosed volume of tissue, which is larger than that viewed by the

“pencil beam” antenna pattern, should be able to be scanned

electronically by introducing a delay in one arm of the correlator

with the antennas stationary. Electronic scanning utilizing the

radiometer delay [7] is distinct from aperture synthesis radi-

ometer [8], in which the longitudinal coherence function, or

mutual intensity function, is measured at several different loca-

tions by either antenna movement or antenna switching, with the

radiometer delay set to zero [3]. Image reconstruction using

aperture synthesis techniques is the microwave analogue of a

van Cittert– Zemike experiment in optics.

In this paper, we discuss the cross correlation of thermal

radiation from two sources received by two antennas that are at a
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1The van Cittert–Zemike theorem states that if the delay in the two paths of

the correlator is much less than the reciprocal of the bandwidth, then the

mutual intensity function, as measured across the detection pkure, is equal to

the Fourier transform of the brightness of the source distribution [1].
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